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INVESTIGATION OF THE FORMULATION OF THE 
BOUNDARY-VALUE PROBLEM OF THE LOCAL THEORY OF 

ELASTOPLASTIC PROCESSES-f 

S. V, YERMAKOV 

Moscow 

For a complex stressed state, a three-term dctining relation (I, 21 is used which implies that the 

five-dimensional stress, stress rate and strain rate vectors are coplanar. On the hypothesis of local 

definiteness 131. the two ct~cfficients occurring in the three-term relation arc taken as functions of three 

functionals of the process-the stress inicnsity, the length of the arc of the deformation path and the angle 

of approach. For bounded derivatives of these two functions with respect to each argument. conditions 

securing a correct formulation of the static boundary-value problem in terms of rates of each instant of the 

elastoplastic process are determined. 

A formulation is given of the quasistatic global boundary-value prohlcm for the whole process. It is 

proved that the operator of the global problem. an operator of the variational calculus 141. is positive 

dcfinitc, strictly monotonic in the main and possesses the (S),-property [S]. Using the theorem of Leray and 

Lions ]4]. it is shown that a generalized solution exists. It is pro& that the global solution is unique and 

continuously dependent on the external loads. For the step method. using discretization of tbc process with 

respect to the load parameter, and iterational methods (of the type of SN-EVM method [2]). convergence 

of the approximate solutions to the exact solution of the global problem is proved. 

1. FOR TIIE defining relation for elastoplastic materials in the case of complex stressed state, a 
three-term relation between the deviators of the stresses S, and strains eii was proposed in [ 1,2]: 

Sij’=‘f,lVeij’-t~~,jS’iU, O= (~/*SijSij~ +, S’;= (‘ftc,j’ejj’_) “’ (I.11 

Here and below the summation is over repeated indices i, j; the dot denotes the right-hand 
derivative with respect to the parameter 1E [O, T], which increases monotonically with time; N and 
M are functions of the curvature of the deformation path over the length of its arc s, in the elastic 
region with e,, = (%eije;~)“* < e,T we have s = ecr , M = 0, N= 3G (G is the shear modulus and e,Y is the 
yield point). 

Relation (1.1) (in vector form) was derived in [ 11 subject to the conditions of local definiteness [3] 
and the existence of an instantaneous limiting surface which is regular at the load point. Relation 
(I. 1) was proved for an arbitrary complex load on the basis of an analysis of the experimental data, 
with N a function of two arguments: v and the angle of approach 8 = arccos(eij’S,lu.s’). Specific 
modifications of (1.1) were considered in [7-lo]. 

We shall assume that the coefficients N and M are functions of the three functionals of the process 
(T, s and z = case. Comparison with experimental data supports this hypothesis [6].$ Defining the 
deviators 

tl’rikl. Maf. Mekh. Vol. 56. No. 2. pp. 321-330, iYY2. 

$See also: YERMAKOV S. V.. Analysis of the relations and boundary-value problems of the theory of elastoplastic 

processes of moderate and low curvature. Author’s abstract, MGU, Moscow, 1983. 
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we rewrite (1.1) in the form of a differential equation with respect to S,‘. 

SiJ=bij(SMm* S(tfp ek3n'(t))~ sij(o)=O; bij=bij*(S*m* $7 p*m)S* (l-2) 

We impose on the functions N, M and their derivatives the conditions 

-3G,<P(@(sj, s, -I)GP(#(s), S, z)GP(@(s), S, 1)s 

=tD’ (s) >y,>o (1.3) 

OCN<iV,, o< ]M] 6M*?Yo, &=A&y* 

]M/&] <(El, ]aEtas] <E2, f t3Elc% 1 G E,a 

yl, M;, Ni=const>O, (i=O, 1,2,3), O~~Eo/@(S), P( a,s,z)=M+Nz=dold.s, where G,aG is 
the unloading modulus, cf, is a function of hardening during simple loading and E denotes M or N. 
From (1.3) we obtain 

O,g’l; Ibij*I~(‘/zbij*bij*)“~b03MO+N0, IbijlGb&’ 

IA,~~~~~;KIIAS,~I+K~IASI, ]AZbij]Gbz]Aec;] 

K,=M,~N,+(~M,+M,+N,)/(Ge,), Kz=Mz+Nz, b,=bo+l;Z(&+X) 

bIbi* = bij (St:, SC’), e;r(z) - bij (SE:, d2), e’$$ 

Azbij z bii (Stk, ~(2)~ e$z) -bij (Skmt 
(2) S(2), egj) 

As = s(I) - sdt, ASil = ,$’ - S$‘, Aei,’ = e;y’ -.. e;:2’, 

1 heif’ I = (2/sAcij*Aeij-)” 

(1.4) 

From (1.4) using Gronwat’s lemma (IS], p. 191) it follows that 

f A,bi, (t) 1-G b (t) s’(l) (t), b(t) = min {p (s(l) (1)) { 1 Aeif (1;) f dz, bi] (13 
0 

p (s) =K, exp (Kg) (Kzs+bt) +I&, bl=2MB+No 

Let us determine the conditions of (1) positive definiteness; (2) monotonicity; and (3) L- 
continuity of the connection S,’ - eij’ (1.2) for all s > e,s. CF~) s 1. 

(1) if F(a, s, z)=Mz+N&y, for all ZE[-1, 11, then 

(1.6) 

(2) Using Sylvester’s criterion, we find that if, for A0 = 0 (I)- fl(“#O, the condition F(cr, s, z) is 
satisfied and 

4p”p’_ [Jpz’~‘+M’z z(‘)+ (N”‘+N’2’)cos AO)*>O (1.7) 

M(k) = M (a, s, dk)), iV’k’ = N (a, s, dk)), 

z(k) = cos fjfk) = e;j%&s’(k)), k=1,2 

then I~[bij(Sk,, S, ek$))--bij(.S,,, S, e&$2’)]Ae;i>0 wh en Aeij# 0. Special cases of condition (1.7) 
have been considered earlier in [8-l 11. Using the differentiability of N and M with respect to z, as in 
[9], we find that if, for ZE[-1, l] 

N,‘=dN/+?z~O, M,‘<O. .&(a, s, i)=M-M,‘zi-N,‘zGO, ZE [--I, if (1.8) 

N-N,‘z+M,‘+L>y,>O, ZE f-4, 01 (1.9) 

and for zE]O, I] either inequalities (1.9) and *((T, 3, 2)~ L-2N,' ZSO or inequalities ~f’(o, s, 
Z) > 0, N + M,’ + L2/(4N,‘z) 3 y2 are satisfied simultaneousIy, then 

I>yz*Zf,AeiJAeiy, y,=const>O (1.10) 
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(3) From the L-continuity of b, with respect to Sk, for functions ekm’(l) which are piecewise- 
continuous with respect to t, it follows that a unique solution of (1.2) exists. We introduce the set of 
tensor-functions Sij* (or f+‘): 

Assertion ].I. If inequalities (1.3), (1.6) and (1.10) are satisfied, then the operator 
DE(eii’EZ(++S,’ -+Z(b,,x)) defined by (1.2) is L-continuous and has an inverse L-continuous 
operator 

in the sense of the norms 

Proof. The L-continuity of the operator D with constant 7’xp(Tx) + bz follows from (1.4) and (1.5). 
According to (1.6) and (l.lO), Eq. (1.2) defines an implicit function ey* = $ij(Skm’, Skm, s) which is 
L-continuous with respect to Skm’ with constant V, = yz- ‘. If S,,‘E Z(b,,x), then it follows from (1.6) that 
e;,’ E Z(b,,x/-y, ), and according to (1.4), (1.10) the function j +ij / is L-continuous with respect to Sk,, and s with 
constants V, = Ki_,x/x2 (i = 2, 3). Then the equation S* = I&(S,,,,‘(r). Sk,Jt),~)l with initial condition 
s(O) = 0 has a unique solution, that is, the operator D-‘, the L-continuity of which with constant 
exp(V3T)(VI + TV2) follows from Gronwai’s lemma, is defined. 

By way of illustration, we consider expressions for N and A4 in the form 191 

I==[@‘-(a+arz) @/A]u~ N=(r+rtzuo) @/A; r*=i-r, ati=%-a; (1.11) 

where X, a. r are functions of $, found from experiments on plane paths of def(~rnlation where, in the elastic 
range of r, a, W(3Gh) = 1. When s > e, for some steels and brasses (see the reference in the footnote), 

O,l<a<i; t<rai+a; C<Bt/%<~G (1.12) 

If the derivatives A’, cy’. r’, @’ and @“ are bounded and the conditi~~lls 

7fG@/h, Q’~/UKa4i+r-@‘X~U+ icmzi+a (1.13) 

are satisfied, all the restrictions on N, M and the properties l-3 of relation (1.2) are satisfied, with 72 = yi/2 [!?I. 

2. The equilibrium equations, Cauchy relations and the coupling equations (1.2) (for given values 
of Sk,,, amd s) together with the linear relation between the spherical tensors oil = 3Keii and the 
boundary conditions define the static boundary-value problem for any te [O, ZJ relative to the 
velocity vector u’ E C2(Q) fl Cl (Cl) (Lagrange’s equation): 

(2.1) 

Sji(u’) is defined by relations (1.2), TII and r,, are parts of the surface bounded by the finite region 0 
occupied by the body, Fj and Pj are the components of the volume and surface forces, 5’ is the 
virtual velocity and 4’ = 0 on rtl. 

We consider functions u’ E H, H(f2) is the Hilbert space f12]. The left-hand side of (2.1) defines a 
linear functional on C’E H. From (1.4) it follows that this functional is continuous and the operator 

Ac(H -, H*) : (Au’, r’> -L S Uij’ fu’) sii’di’, ItAIf<G<c*j 
S? 

is bounded, t-i *’ is the conjugate space. From (1.4), (1.6) and (1.10) it follows that the operator A is 
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positive definite, L-continuous and strictly monotonic [9] with constants C, , Cs and C4 which do not 
depend on Sk,,, or s. Suppose that the external loads satisfy the conditions 

Fi'(t)ELqtfQ)p Ql>'/,; Pd'(t)ELpt(~o)* Q*>'/* (2.2) 

Then Eq. (2.1) can be written [12] in the form of an equation in H*: 

Au.- j, jEIP (2.3) 

According to the theorem of Minty and Browder [5, p. 961, the following assertion is true. 

Assertion 2.2. Suppose that conditions (2.3), (1.3), (1.6) and (1.10) are satisfied. Then Eq. (2.3) 
has a unique solution u’ E H, the inverse operator A-’ E (H * -+ H) being L-continuous and strictly 
monotonic. 

Note 2.1. From Theorem 3.3 of [5, p. 1031 there follows the strong convergence of Galerkin’s solutions to the 
solution of (2.3), and from Theorem 3.4 of [S, p.1041, the exact solution is the strong limit of linear iterations. 

3. Let us formulate the global quasistatic boundary-value problem. It is required to find a vector 
u(x)EC1(O, T, C*(a) II C’(a)) (x = {t,~} E Q= [0, T] x fI) satisfying (2.1) in which S,‘(u’)(x) is 
understood as a mapping of the vectors u’(x) on the deviators over Q defined by the Cauchy 
relations and Eq. (1.2). 

Integrating (2.1) with respect to t, we obtain the equation of virtual work 

F 
CJ’~i’(U)(x)~i/‘(X)dQ z Fi’(X)ii’(X)dQ + 

ir i! 

$- fs Pi’(X)Li’(X)dl‘dl, VC’ E C’ (0) (3.1) 

We let X = L2(0, T; H) den:te the Hilbert space [5, p. 1591 (of classes) of functions t-u(t): 

IO, T[-+ H(f1) which are measurable, take values from H, and are such that 
T T 

t s II u’ (L) I$, dr 
> 

% z 11 u 1i.r < x , (IL’, u’)_y = 
F 

(u’ (q, ut (t))H dt 

u ‘0 

Similarly, we define the space Y: 

uij E 1’ z L: (0, T; (12, (!iJ))‘), IlnijliY - ( 
5 

Iaij(X) [‘da)’ 

XI denotes the set uEX: s’(x) E L, (Q). 
The left-hand side of (3.1) defines a linear continuous functional on 5 EX. For the non-linear 

operator UE (X+X*) (X* = L,(O; T, H *) is the conjugate space [5, p. 1.591, defined by the tensor 
U;~‘(U)(X), we have 

<~JIJ, c)T = t A ‘Cm(‘). S(f) IJ’ Vh C’ (1) > fit (3.2) 
b 

where the dependence of A on S,,, and s is explicitly indicated. Using the Hiilder inequality and the 
properties of the operator A, we find that U is bounded and positive-definite with the same constants 
as A: 

IIUUil.~~~C,IIUII.~, cull, u).>Cczl~ullxZ (3.3) 

We represent the operator Uu in the form B(u, u), where the operator u’, u2+B(u’, u’) (as an 

operator from XX X into X*) is defined by the expression 
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cB(U’~ II’), 6)T=SQ[btj(Skm*(X), S*(X), eAm”(x))+ 

+6ij3~E'2(X)]l;ij'(X)dQ (3.4) 

S;j’ is the solution of (1.2) with ekNI’ = ekrn*‘, s = s ‘. 
Relation (3.4) defines two operators: 
(1) for VuEX B, E(X--+X*): B,u* = B(u*, u); 
(2) for VuEX BZE(X-+X*): B2u* = B(u, u*). 

Note 3.1. The operator Bl is defined on VuEX and the operators Br and U, (for the time being) only on 
u E X for which a solution of (1.2) exists. 

From (3.2) there follows the L-continuity and strict monotonicity of the operator B? with the same constants 
as A (Au = II’-u’, u’, r&X): 

~u~SlfB(u, u’) -B(u, u2)li=b~C~liA~~~, 

(B(u, II’) -B(u, u?), Au)T~C~IIAUII,~~ (S.5) 

Note 3.2. The operator U, generally speaking, is non-monotonic 

Lemma 3.1. Let u,*-u in X as n-+ 00. Then 

Proof. Putting II(“) = II,, -u, we have s’(“), F ““‘-0 in &(Q). Then from (1.4) and (3.4) 

w, < (~~r’*(x)J”“~(x)+BKt’*(x)e’~“~(x)]dQ~ 0 5 
4 

Lemma 3.2. Let a E (a---+ R ’ ) be finite almost everywhere in R and YE L,,(O), 1 dp < ~3, 
C=const>O,~,,ER’:g,, -tOasn-+m; then rv,,-min{/g,,a/, C}v*Oin L,,,(0). 

Proof. From the condition of the lemma, we have w,E L,l(!J), w,,“SP vjJ’E L1 (0) and w,,(x)-+~ for 
atmost all 1 E fl. Then from the Lebesque theorem [S] Ij w, /I--_) 0. 

ten-rmu 3.3. Let u,,+u in X as fz+O. Then 

Proof: Putting 

u(“)=un-u, gnw= s“*) (T, r) dr, xnfx)=min(g,(x)p(rC(x)), b,}c’+W 
0 

from (1.5) for any <,, E Y we have 

I AtSij’bi>dQG X,(X) 1 &j(X) 1 dQ 

0 Q 

From the Molder inequality it follows that g”-+O in L*(Q). Then, using the absolute continuity of the 
Lebesque integral, from any weakly convergent sequence which is a subsequence of {x,, }, a subsequence can 
be selected which converges strongly to zero, and then from Lemma 5.4 of [5, p. 201, PC,,-0 in 152(Q). 

C~r#/f~~~ I. The operator B, (and therefore also U) is semi-c~~ntinuous. 

Corollur:v 2. If, apart from convergence u,,+ II, the condition g,, (x)+0 is satisfied for almost ali 
XE Q, then according to Lemma 3.2 A, S;,‘--+O in Y. 
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By direct verification, using the lemma, we can see that if conditions (1.3), (1.6) and (1.10) are 
satisfied, on the whole of X, U is a positive definite operator of the variational calculus, which is 
strictly monotonic in the main part and possesses the (S)-property (see 14, p. 1921). 

Subject to the conditions on the external loads 

FI’=L2(0, T; L,lfQ) ), q*>“/5; P:ELz(O, T; &Jr*)), QzWr (3.6) 

the right-hand side of (3.1) is a linear continuous functional on 5 E X: (f, QT, f EX”. Then from the 
theorem of Leray and Lions [4], we have the following assertion. 

Asserdon 3.1. (Existence Theorem.) If conditions (3.6), (1.3), (1.6) and (1 .lO), are satisfied, 
equation 

Uu-f (3.7) 

has (at least) one solution u E X. 

Assertion 3.2. If fE C(0, T; H*), then for the solution of (3.7) u’ E C(0, T; H). 

Proof. Let u,‘(~)=U’(t,,, J?)-U’(t, $), f,-f(f,,)-f(t); by the condition fn-+O in H* as f,,-+t. From (1.4) 
and the property of A we have for n > n*: 

From Lemma 3.2 // W, //LZcn) +O, and so j/~,*l[~+O as i,+t. 

Lemmu 3.4. If u,-II in X, Uu+f in X” as n--, ~0; then (1) Uu = f; (2) u,-+u in X. 

Proof. (1) By the condition of the lemma (Uu,, , u,)p(f, u)r, and then since U is an operator of the type 
(M) [14, pp. 192, 191, 1841, Uu =f. (2) According to (1) (Uu,-Uu, u,-u)r-+O, and then from the 
(Qproperty u,,-+ u in X. 

Asserriou 3.3. If the solution of (3.3) is unique, then the inverse operator U-‘E(X”--zX) is 
continuous. 

Proof. Let f,,-+f in X” and u,, = U’f,, , u = U-If. From (3.3), it follows that the sequence {u,,} is bounded. 
Then from the retlexivity of X, Lemma 3.4 and Lemma 5.4 of (5, p. 201, we obtain u,,-+n in X. 

Assertion 3.4. (Uniqueness Theorem.) If (3.7) has a solution uEX, CX, then u is the unique 
solution in X. 

Proqf. For t E ]O, t, 1, where t, L e,, /V (V = vrai max c”(x) < co), over the whole region $1 the strains are only 
elastic, and so the solution is unique. suppose that when t s f7 the solution is unique, and when t> t2 L t, there 
exists a solution v E X; v f u. Putting u * = uv, from (1.5) and (3.5) for t>:tz 

1 T 

ca J IW*W IW dr< JJ 1 min p(r(r, 5)) J r’*(y, z)dy, bs a*(?, @da &a= h tl a 1s 

which is untrue for small r - t2. 
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4. We divide the segment (0, T] into v equal parts by points t, = A X n, A = T/v; n = 0, . . . , v. At 

the nth step (n = 1, 2, . . . , v) we shall seek a solution u.(n) E H of the equation 

A(“),,’ = f'"', A(“),,’ z A _ 

Skm ‘n 11, &a-l) u’, f(n)=f(tJEH* (4.1) 

where S&-l) (x), s(“-‘) - (x) are defined on the (n - 1)th step, and SC”), s(“) = 0. 
According to assertion 2.1, Eq. (4.1) has a unique solution. For tE [tn_, , t,], we first calculate 

Ejj’ (t) = (U;$+’ + U;‘ri”)/2, s(t) = s(“-‘1 + (t - t,_l) s’(“-1) 

and then for known eii’ (t) and s(t) we find S,(t) as the solution of (1.2) with the initial conditions 

S,(tn-1) = S&l) . Then, putting St; = Sk,,, (t,,), s (‘I) = s(t,), we transfer to the solution of (4.1), at 
the (n + 1)th step. As a result of the step method, we obtain the solution uA’(t, X) = U’(“)(X) for 
tE]t,,_, , t,], which is piecewise-constant with respect to t, where the function s(ui\)(t, X) is 
piecewise-linear with respect to t, and the deviator S;j(U,)(t, X) is piecewise-smooth and continuous 
with respect to t. 

After defining the operator UA and the functional fa corresponding to the tensor a,-‘” and loads 
F;‘“, PieA which are constant with respect to ton each step: 

using Theorem 1.8 of [5, p. 1531, we obtain in X’” 

Udi*==t& 

We shall assume that the external loads satisfy the condition 

fa+finX* as A.-O 

Lemma 4.1. Suppose that as A-+ 0 for any A 

~‘(n)(~)~~(~)EL2(0)foralmostallxEfiandalln= 1,. . ., T/A 

Then W,, G 11 u;jaA(UA) - U,,‘A(U~)lly+ 0. 

(4.2) 

(4.3) 

(4.4) 

Proof. From (1.5) and Lemma 3.2 we have 
* III 

<T min(AZp?(T:(r))e2(~), bi2)g5(I)dQ-+0 as A-O. 5 

Corollary. If condition (i.4) is satisfied, 11 UAu - UU&~+ 0 as A+ 0. 

Assertion 4.1. (Theorem of Convergence of the Step Method.) Suppose that as A+0 the functional 
of external loads and the solution of (4.2) that is piece-wise constant with respect to t, uA’ (x) 
satisfies conditions (4.3) and (4.4); then each weakly convergent subsequence of the sequence {Us} 
converges (strongly) in X to the exact solution of equation (3.7); if in (4.4) SE L, (fi), then Us+ u 
in x [U is the only solution of (3.7)] and U’ijA (uA) - Uij’ (u) in Y. 

Proof, From the corollary of Lemma 4.1 it follows that Uu*-+f in X*; as in the proof of Assertion 3.4, 

allowing for the fact that when SE L, the solution of (3.7) is unique in X, we obtain the required result. 

Note 4.1. The condition of strong convergence of the sequence of tensors {ai, ‘-\(uJ} to the exact solution is 

given in corollary 2 of Lemma 3.3. 

5. We consider the two iteration rules: 

I. Ju,=Ju,_,-z(Uu,-1-f); 2. B(u,-1, un)=Uun-,--~(Uun_i-f); 
n>l (5.1) 
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where J is an operator of the linear theory of elasticity such that (Ju, u)r = jIuI(+ 

Lemma 5.1. Suppose that (1) iterations u, given by the second rule of (5.1) belong to X,C X; (2) 
there exist numbers 0 <p < 1, O<T* d 1 such that in a neighbourhood of u. of radius 

r = II Uu0 - fllx* it1 -P) G 1 
#3(u, v) -Ev/j.pGpi\B(u. Y) --Vuitx*, Vu. VEX,: ~~u-~l\~~~*(l--p)r 

Then for any ~~10, T*[, u,, converges strongly to the solution u of (3.7): 

tlUu,-ljl,.~:k”![llu,-rjf, iju,-uj[x<k”r, k-I--((I--p)<l 

c5.2) 

(5.3) 

Proof. When n = 1 from the strict monotonicity of Bzl/ul -uo)]G~* (1 -p)r, then from (5.2) we obtain 

Wl G kW0, W” = II %I -f 11x*, na0. By induction for n>2: IIu,-u~_~J~~~~W,_,C~-‘, W,SkW,_,, and then 
IIu,-u&<r and inequalities (5.3) are true. 

Suppose that the region of the body and the external loads are such that iterations (5.1) u,EXr CX. From 
(5.1) for ui, u*EX, which differ only for tC [I~, t2]: 

‘I. 

Using the Holder inequality, from (5.4) we have the estimate 

I!B(ut, uz)- Uu*lt~~~~(A)ilAuli.~. Au=u’ -uz , p(h) -AVp(AV)/3G (5.5) 

It follows from this that the operator U satisfies the conditions of L-continuity with constant C3* = Cj + b(A) 
for such II’, u2. Moreover, from (5.5) and the strict monotonicity of Bz it follows that there exist A’ and A”. 

such that when At A’ inequality (5.2) is satisfied, and when A<A” the operator U is strictly monotonic with 
constant C,* = C, - @(A)/2 > 0. 

Then from Theorem 3.4 of [5, p. 1041 and Lemma 5.1 we obtain the following: 

Asserrion 5.1. Iterations which are defined by the first (or second) rule of (5.1) with 

r E IO, 2c4* fG*>-*[ ( or 7~]0,1]) converge to the exact solution u of (3.7), with the error estimate 

]]u,&-uI].~ <@“n “-*C, C~~,,~~Wu,-f~~.~.(l+~o~(Ao)/p)‘-’(i-~)-v, v=Tl& 
pa& [I-~c,*T+ (c3*~)*)‘f~ci, T*=T, b*=A” (HJM p==kcf, T,,=TIC,, A,,==A’j 

I wish to thank V. S. Lenskii for formulating the problem, for his interest and for discussing the 
results. 
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The dynamics of a high-revolution compressor where each of the mountings is formed by two single-row 

ball bearings pressed into a common housing and considered. Springs with a rated force are set up hetwcen 

the housing and the body. Relations are obtained between the mass characteristics of the housings, the 

coefficients of rigidity of the elastic mountings and the frequency of rotation of the compressor for which the 

dynamic pressures on the mountings of an unbalanced rotating compressor vanish. Formulas arc obtained 

which &fine the first two critical frequencies of rotation of a comprcsaor in elastic mountings. 

As rtrk frequency of rotation increases, the operating life of ball bearings when they are rigidly installed in the 
framework falls sharply since the pressure between the balls of a bearing and its external ring increases in 
proportion to the square of the angular velocity of rotation. According to the theory which is presented in 
courses in theoretical mechanics [l-3]. in order the reduce the pressure on the mountings, it is necessary to 
reduce the static and instantaneous imbalance of the rotating solid to zero. A whole branch of technology. that 
is balancing technology, has been set up for this purpose. However. in practice. as a consequence of 

deformation, the reaction of ball bearings. starting from a rather low value of the eccentricity and angle which 
characterizes the instantaneous imbalance. continues to increase sharply at high values of the frequency of 
rotation, which also leads to the destruction of the bearings in spite of very careful balancing [4]. 

The installation of elastic mountings [S] between the external ring of a bearing and its housing became an 
alternative when designing efficient high-revolution machines mounted on ball bearings. However, their 
premature breakdown is observed when the rotor is installed in single-row ball bearings due to the 
misalignment of the cage with respect to the external ring of the bearing. It is shown below that, when 

mountings consisting of two single row ball-bearings pressed into a common housing which is mounted 
elastically in the body are used, all the advantages of a shaft in elastic mountings are preserved and there is no 
skewing of the cage. 

t Prikl. Mut. Mekh. Vol. 56, No. 2, pp. 331-335, 1992 


